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SUMMARY 

Two different methods of chromotomographic reconstruction applicable to the 

MWIR were investigated by the Optical Sciences Center, University of Arizona for The 

Air Force Research Laboratory (AFRI/SNHI) at Hanscom Air Force Base, Hanscom, 

MA. The first method involved the decomposition of the datacube into principal 

component space, using the center order broadband image to estimate the spatial 

principal components, then using this estimate to deconvolve an estimate of the spectral 

principal components. The second method used an extension of the traditional 

maximum-likelihood approach to suppress noise in reconstructions of simulated low 

background scenes. 
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PREFACE 

This final report describes development of reconstruction algorithms for MWIR 

chromotomography by the University of Arizona's Optical Sciences Center for The Air 

Force Research Laboratory (AFRI/SNHI) at Hanscom Air Force Base, Hanscom, MA. 

The principal investigator was E. L. Dereniak. 

The authors wish to thank Tom Hamilton of SMDTC, Huntsville, Al for 

providing the 512 x 512 InSb snapshot camera used to collect data for this project. 
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I.        INTRODUCTION 

Chromotomographic imaging spectrometers have been operating successfully in 

the visible region of the electromagnetic spectrum for several years. Recently, however, 

there has been heightened interest in adapting the technology to wavelengths beyond one 

micron. In addition to the group at Hanscom AFB, the Optical Detection Lab at the 

Optical Sciences Center, University of Arizona has developed a prototype MWIR 

computed tomography imaging spectrometer (CTIS). The prototype system utilizes a 

simple binary phase disperser fabricated in GaAs and a 512x512 InSb snapshot camera. 

Standard reconstruction techniques such as Expectation-Maximization and 

MART2 have been used with some success to reconstruct object cubes from the raw 

snapshots produced by this instrument. This report documents investigations of two new 

reconstruction techniques. The first method, designated here as "Principal Component 

Method", shows potential for increased reconstruction speed. The second method, 

designated here as "Extended Maximum Likelihood Method", demonstrates increased 

immunity to signal-independent noise in the raw data. 



H.       PRINCIPAL COMPONENT METHOD 

The forward action of tomographic imaging spectrometers is described either by 

theoretical model3 or by experimental measurement4. The goal of our software 

development is to invert the problem to form an estimate of the object cube from the raw 

data collected by the spectrometer. Traditional techniques such as pseudoinverse and 

iterative algorithms have been applied to yield acceptable reconstructions. More 

advanced algorithms are required to improve results using a priori information about 

target scenes and the imaging system. 
Experiments performed at the University of Arizona apply to the second- 

generation MWIR Computed Tomography Imaging Spectrometer (CTIS). The 

instrument employs a simple, binary phase Computer Generated Hologram (CGH) to 

produce several simultaneous tomographic projections of the 3D object cube onto a large- 

format Focal plane array. The result is a non-scanning, flash imaging spectrometer. The 

current MWIR CTIS operates in the 3.0-5.0 urn band. The current CGH limits the 

system to five useful projections onto a 512 x 512 focal plane array. The spectral 

accuracy of the instrument is limited to about 21 bands by the low number of projections. 

Recent work has investigated the decomposition of the datacube into principal- 

component space, 

/(*,ja)=Z»»M-v»M-w« (1) 

The set of orthonormal vectors {vn} represents the spectral principal components 

of the datacube and is complete in the spectral space. The set of orthonormal images 

{Mn} are the principal component images corresponding to {vn}. The values of w indicate 

the contribution of the n* principal component to the composite datacube. R represents 

the number of non-zero values of w, which for a discretized datacube may be less than or 

equal to the number of wavelength samples. 
Any order in the CTIS raw image can be expressed analytically using the 

datacube decomposition from (1). Equation (2) expresses the raw image orders as a 

convolution of the principal component image and principal component spectrum. 



The order index is j, fy is the unit vector expressing the diffraction angle of the order, 

and m is a scaling factor proportional to the order's diffraction angle. vn(myr-ry) is a 

two-dimensional representation of the spectral principal component; v,, (wiy? • fy )=v„(A). 

Similarly, t[m rry] is the 2D representation of the CTIS transmission, responsivity, 

and order diffraction efficiency as a function of wavelength, t(A). This equation is 

derived by expanding the 3D tomography expression into the principal components basis 

set. 
The potential of this expression for the raw image is revealed by Fourier 

transforming (2) with R=l, p = £| +17fj: 

Gj^,nhw0-U0{^)\v0(p-Tj)**Tj^-rj)\ (3) 

This expression was simplified by setting the m, term to 1, which is reasonable for 

a discretized system in which the sampling of the spectrum corresponds to exactly one 

pixel of dispersion in the first order. The Fourier transform of an order is the product of 

the Fourier transform of the spatial principal component and the 2D representation of the 

Fourier transform of the spectral principal component. 

To form an estimate of the datacube using this technique, it is necessary to impose 

a constraint that the datacube is dominated by the first principal component (wj > 10w2). 

Several non-overlapping orders must also exist in the raw image. The initial estimate for 

uo is the center order from the raw image. Dividing Gj by U0 yields an estimate of the 

principle component spectrum. Terms fy and 7} are known from calibration data, as 

well as small corrections in the diffraction angle due to tilt of the CGH. 

Figure 1 shows the extracted order images from an MWIR CTIS raw image of a 

warm coffee cup. Figure 2 shows the Fourier transforms of the center and diffraction 

images of the same image. Multiple orders contribute more estimates of v0, however, 

some orders will have better estimates of some parts of the spectrum than others (for 

instance, notice the structure oriented at about 145° in the center order of Figure 2 is 



represented strongly in the lower left and upper right diffraction image spectra, where the 

diffraction angle is nearly orthogonal to the structure). Thus, a regularized ratio may be 

used to reduce noise and weight the contributions to the spectra. This technique assumes 

that t(Ä) is constant for all orders used, but that is a reasonable assumption for a 

properly designed CGH. 

.^Sagä&Esj Ätäi fe-.. 

<^B fttK- 
■ 'ii "3^1 

' i^sM 

-IS iPP^' 

Figure 1. Order images extracted from an MWIR CTIS raw image of a warm coffee cup. The image at left 

is the center order. The arrangement of the diffraction images corresponds to their alignment on the FPA. 

The image satisfies the requirement of a dominant first principal component since the scene has nearly 

uniform emissivity and temperature. 



Figure 2. FFTs of order images extracted from an MWIR CHS raw image (displayed using a logarithmic 

scaling of the FFT amplitude). The arrangement is identical to their respective images in Figure 1. 



There are two constraints which may be imposed to improve the spectrum estimate. The 

first principal component spectrum must be positive and it must be zero outside of the 

transmission band of the spectrometer. Since these constraints are both imposed on the 

real spectrum, an iterative retrieval algorithm may be used to recover data at frequencies 

not present in the object. The results of an example recovery using only the positivity 

constraint are demonstrated for the coffee cup image in Figure 3. 

Figure 3. Results of an iterative retrieval of the first 

principal component from an MWIR image of a 

coffee cup. 
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Equation 3 may be used to estimate the first principle component image, w0, from 

the diffracted orders and the estimate of v0. In this case, dividing Gj by VQ yields an 

estimate of the principle component image. The estimation of the full (E,,r\) plane is far 

from complete for the second generation MWIR CTIS since the raw image has only four 

orders (and only two independent f directions). 

As with the principal component spectrum estimate, constraints in the image 

space allow an iterative recovery of parts of the missing spatial frequency data. The 

constraints are similar to those of the spectrum since the boundaries of the field stop are 

known and the first component must be non-negative (subject to the non-negativity 

constraint of the image). In addition, it is possible to impose the constraint that the 

component images must be zero wherever the center order is zero. This approach would 

only be unreasonable if the diffraction order efficiency into the center order were very 

low for any wavelength range, which is not true of any of the CGH gratings currently in 

use. 



The results of a spatial component estimate are shown in Figure 4. Part (a) clearly 

shows a recovery of the horizontal and vertical structures (corresponding to crossed sine 

functions present in the FFT of a square cup and a square field stop). The diagonal 

structures are an artifact of the limited number of projections and are clearly evident in 

the corresponding image (Figure 4b). 

(a) (b) 
Figure 4. Advanced initial estimate of «o for the coffee cup image (Figure 1). (a). Center image and 
positivity constraints applied to t/0(S,n) (logarithmic scaling), (b) FFT of U(f&r\) after 15 iterations of the 
constraint algorithm. 

Reassembling the initial estimates of u0(x,y) and v0(k) into a CTIS raw image 

estimate (g{x,y)) according to (2) recovers for 83% of the image data (root-square sum). 

About 5% of the image data residual can be attributed to noise. Since the raw image does 

not contain the complete object cube information, the estimated datacube would have a 

lower accuracy compared to the object cube. 

Subtracting the estimate from the raw image leaves a new raw image without the 

first principal component. An attempt to recover the second component is possible, but 

most of the constraints which applied to the first principal component are no longer valid. 

The center order is not a reasonable estimate of the second principal component image 

and the positivity constraint for either the spectrum or the image do not apply. Only the 

constraints on image and spectrum boundaries may be employed. 

Based on experiments using several images, the second estimate typically 

recovers an additional 8% of the raw image information. Instead of estimating the 

second component, the first component may be used to form a datacube which is used as 



an initial estimate for an iterative reconstruction. With more orders or a raw image with 

less noise, the contribution of the second component may become useful. 



III.      EXTENDED MAXIMUM LDXELfflOOD METHOD 

Of particular interest to our group at the Optical Detection Lab are tomographic 

reconstruction algorithms suitable for MWIR low background applications due to our 

recent involvement with BMDO and due to recent interest from members of the 

astronomy community. The problem of detecting a thermally dim object against a dark 

background, which may be dominated by camera system noise rather than photon noise, 

is one that requires a modification of our conventional approaches. Heretofore we have 

assumed that either signal dependent or signal independent noise alone characterized the 

entire image. 
Recently, a step toward the solution of the mixed noise problem was undertaken 

by Garcia and Dereniak5. The MERT algorithm achieved some success in reconstructing 

images in which the background was dominated by system noise and the "bright" 

portions of the image were relatively dim. However, system noise suppression was not 

entirely satisfactory. Furthermore, a literature search revealed that algorithms proven to 

deal effectively with this situation were generally too slow for our purposes. This section 

details the derivation and initial testing of a new algorithm designed to remedy these 

problems. 

Derivation 

The derivation begins identically to MERT5, but with one critical difference. The 

signal dependent photon noise is treated as a normal point process rather than a normal 

continuous process. This approach is an inherently more accurate description of photon 

statistics arising from the quantum nature of light. As before, 

g = Hf + nl + n2 (5) 

The elements of the measurement vector g represent the number of detected photons per 

pixel during one integration time in our imaging system; the elements of the object vector 



f represent the number of photons emitted during one integration time for each resolution 

element of the object. The matrix H is essentially a discrete representation of the 

imaging system's point spread function. Both vectors are convenient ways of expressing 

a two-dimensional array in a one-dimensional format to ensure that H can be expressed 

as a two-dimensional matrix rather than a rank four, or higher, tensor. The matrix element 

Hij gives the contribution of object element fj to measurement element g;. We wish to 

find the most likely noiseless object f that could have produced the measurement g in the 

presence of photon noise, represented by nl, and post-detection noise, represented by n2. 

To apply the Maximum Likelihood principle, we will assume that the signal- 

independent system noise, n2, is a Normal continuous distribution with zero mean and 

standard deviation as, which can be measured. We will further assume that each Poisson 

distributed (Hf)m + nlm is well approximated by a signal-dependent Normal point 

distribution with mean (Hf)m and variance (Hf)m. This holds true when (Hf)m is greater 

than or equal to ten6. With these assumptions, gm is the sum of two statistically 

independent normal random variables, one continuous with a zero mean and variance as 

and the other discrete with mean and variance equal to (Hf)m. The probability density of 

measuring gm photons in the presence of photon noise at the m* detector given some 

object emission distribution f is 

"fci,)-S^feH-,^SJLr'--0   (6) 

The summation of weighted delta functions in this expression reflects the fact that the 

photon noise is quantized. The probability density of measuring gm photons in the 

presence of the system noise floor is 

»«■^-ikA-m m 

10 



The probability density in the presence of both noise sources is the convolution of the 

two densities. 

PT(gm I *,0 = Plum I f) * Pligm I °",) (8) 

or explicitly, 

1     °° °° 

PT(gm\t<rs) = -— JXexP 
2;r<75  -«.'=0 

k-(Hf)mr 
2(Hf)m 

exp J^ß^\s(gm-i)dgm    (9) 

Carrying out the integration and considering all detector positions as statistically 

independent gives the probability of seeing some image g for an object f. 

, .,   ^    l rrv,vi MHf)m]2l    f \g.rJl ^(g|f'^)=^;nz-p|-^r-|exp|  _2 2<rf 
(10) 

Taking the natural log in the hope of producing amore tractable function of the object 

estimate f yields 

r 1 M 

ln|^r(g|f,o-1)J=-ln(2«-cr1) + 2;in 
m=\ 

Sexp 
1=0 

J-O^-fleJ-k^I 
2(Hf)„ 

expi~J 

2<x 
(11) 

To find a maximum likelihood estimate of the object, we take the partial derivative with 

respect to a test estimate of the number of photons emitted from the n* element and insist 

that it equal zero. 

-r-ln[pr(g|f,o-,) 
Of* 

= 0 (12) 

11 



Using the fact that 

g(Hf)ff 
d&Hj,) 

dfn 
= Hm 

(13) 

we arrive at an equality which maximizes the likelihood. 

eXPi"~2^" M z 
m=l 

00 z 
1=0 

i 

_(Hf)m_ 

2 

exp- f   t-(Hf)Jl 
2(Hf)m 

I>pj   J 
,=o       [ 

'-(HO.. 
2 

2(Hf)m . 

\gm-if 
■Hm 

2al 

M 

I 
m=l 

=ZWJ (14) 

We can formulate an iterative algorithm for the best current estimate of each element off 

by using (10 ) above in a correction factor which is applied to the previous estimate of 

each element off. 

J n Jn 

2>'2exPJ 2(Hf*)m   j   Pl    2cr>   j 

(15) 

m=l 

Implementation of this algorithm, as written, is extremely computationally intensive, 

making it too slow for our purposes. Even though the summations over / can be truncated 

to plus or minus 5 os about gra , if os= 10 then conceivably as many as M x 200 terms 

must be computed for each element of f where M is the number of elements of g. Surely 

there must be a faster way. 

Fortunately the sums over / appear as a ratio, raising the possibility of 

approximating the numerator and denominator by the area under the continuous curve 

defined by the product of normal functions rather than explicitly adding up the value of 

12 



this product at many discrete points. If these areas can be expressed in closed form, then 

significant computational savings will result. The concept is illustrated in Figure 5. 

^liiniimiiK Fl 

Jllllllk 
F2 

Figure 5. A ratio of two envelopes evaluated at many discrete points 

can be approximated by the ratio of the areas under the envelopes 

which hopefully can be expressed in closed form. The approximation 

should be good when the spacing of the discrete evaluation points is 

small enough that the envelope doesn't change appreciably in between 

points. 

The approximations involved can be expressed by the following relations. 

oo   2 
Z i   exp- 

/=0 

/-(Hf*)m 

2(Hf*)m 

»exp- 
Urn-1] 

2a. 

20(Hf*)m 2 

\       i   exp- 
0 

i2l 

i-(Hf)m 

2(Hf*)m 

exp- 
Urn"'] 

|21 

2a. 
>di 

(16) 

CO 

X exp 
«=0 

[- (Hf*)m 

-\2 

2(Hf*)m 

expi-- [g«-*] 
2<TC 

20(HF*)m 

J 
0 

exp 

n2l 

/-(Hr), 

2(Hf*)m 

•exp-s 
[gm->]    L 

2cr. 

(17) 
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and the reduction to closed-form can be written 

20(Hf*)B 

f i2 exp f   \i-W
k)J} 

2(Hf*), 
^V^-^-ß-[di = F\[(mk)m,gm,cx2 (18) 

20(Hft)- 

exp' :L^jexpLk^U=F2[(HF)m,gm,^ 
2(Hf*)m   j      [      2a2   J 

(19) 

The integrals have been carried out to 19 standard deviations past the mean, (Hf)m, of 

the first exponential term in the integrands to approximate an infinite upper limit. Little 

computational penalty is incurred by such mathematical overkill by inspection of the 

explicit forms of Fl and F2. The expressions themselves do not become more complex 

as the upper limit increases provided it remains finite. Only coefficients in the 

expressions change. 

Fl(a,b, 
1 3/2 r i,c) = - — a      Vc exp 

.2 b   + ac 

1c 

l\a4c(b + e) 

(a + c) 

2          2                     2 (c   + a(b   + c + 2bc + c  »exp 
r ,L ^~ a(b + c) 

2c(a + c) 
■JlxKri 

4a(b + c) 

V2-\/c"Va + c 

(a 
N5/2 

+ c) 

1 3/2 r 
— a      Vc exp 

.2 

2c 

+ 

2VaVc(20a + 6 + 21c) exp 
20a(10a - b 

c 

+ 9c) 
-i 

2 
(a + c) 

2          2                      2 
(c    + a(6    + c + 2Ac + c   )) exp 

+ 

a(b + e)2 

2c(a + c) 
V2*Erf 

Vä(20a - 2> + 19c) 

v2vcVa+c 

,5/2 
a + c) ^ 

(20) 
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Va\c exp 

F2(a,b,c): 

(q-ft) 

2(a + c) fr 
■Ja(b + c) 

V2VcVa+( 
Sa4c exp 

(«-*) 

2(a + c) 
-Erf 

■Ja(20a- b - 19c) 

V2Vcva + < 

Va + < Ja + c 
(21) 

With a = (Hf *)m, b = gm, c = <x2, the algorithm can be written concisely as 

Fl 

F2 
fflf*).,^,^2 

OT*).^.,^ 
w 
1^. 
m=l 

(22) 

Since the error function can be easily implemented in a look-up table, Fl and F2 can be 

considered general closed-form approximations to the nasty summations over / in (15). 

Discussion 
We wish to note in passing the similarity between this algorithm and algorithms 

developed by Snyder7 and Llacer and Nunez8 to deconvolve the initially blurred Hubble 

Space Telescope images. Their techniques modeled the photon noise as a Poisson point 

process and the system noise as a Gaussian continuous process. They arrived at an 

expression of similar computational complexity to (15) but were unable to find genera! 

closed-form approximations. Consequently these methods produced superb results, but 

ran with agonizing slowness except for certain special cases when approximations could 

be made. This is not a problem if an overnight run to reconstruct a single image is 

tolerable. Initial comparisons of runtimes indicate that our new technique is roughly 30 

times faster. 

Initial tests of the new algorithm against its predecessor, MERT, were conducted 

to gauge relative performance on a simple reconstruction problem. An optical system 

with an x-y separable Gaussian PSF and system noise equal to signal photon noise was 

15 



simulated with a Monte Carlo program that computes individual photon trajectories to 

accurately simulate quantum spatial noise. The original 17 x 17 pixel object and noisy 

blurred 17x17 pixel image are shown below. 

Figure 6. Original object (left) and noisy blurred image (right). The 

Gaussian PSF was 5 pixels in diameter to 3a. The system noise floor 

was 10 input referred photons and the bright pixel signal level was 100 

photons per integration period. 

The maximum value (bright pixels) in the image was 100 photons per integration period; 

the minimum value (dark pixels) was zero photons per integration period. The system 

noise floor was 10 photons per integration period. Convergence properties were studied 

using a uniform object of 50 photons per integration period as a starting point for the 

images and plots below. 
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Figure 7. Second, fourth, six and eighth iterations of the new 

algorithm (left) and MERT (right). The new algorithm deals more 

effectively with system noise but produces an offset. The black corners 

are artifacts from a slightly incomplete H matrix. 

17 
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Figure 8. Plots of the error vector f - f versus the element index (1- 

289) for the second, fourth, sixth and eighth iterations of the new 

algorithm (left) and MERT (right). Note in particular the offset 

pedestal associated with the new algorithm. The starting point for both 

algorithms was a uniform object of 50 photons per integration period 
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The convergence properties of the new algorithm can be conveniently studied in a plot of 

average error versus iteration number. Here we define average error as 

£rr0raw = 289?J|fj"fj 
(23) 
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Figure 9. Average error versus iteration number for the new algorithm 

(solid line) and MERT (dashed line). The primary source of error in the 

new algorithm is the offset pedestal which is very close to a, . The 

primary source of error in MERT is pixel to pixel reconstruction 

inaccuracy. 

As mentioned in the figure caption above, the primary source of error in the new 

algorithm is an offset pedestal which is suspiciously close to as. We have inspected plots 

of the error vector (see Fig. 4) for large iteration numbers and for different combinations 

of objects and system noise levels and found the same phenomenon. This implies that the 

new algorithm could be dramatically improved simply by subtracting the value of as 

from the final image and setting negative pixel values equal to zero.   However, it would 
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be preferable to track down the precise point in the algorithm where the offset is 

introduced and then fix the problem in a more rigorous fashion. 

So far we have described a new image reconstruction algorithm which deals 

effectively with both photon noise and camera system noise. Good reconstructions have 

been obtained for an image with a symmetrically blurred point spread function, but this 

image is not typical of a raw focal plane image from a chromotomographic instrument. 

In addition, cumbersome mathematical expressions complicate the reconstruction 

algorithm itself. A final concern is that the algorithm produced an image-wide offset that 

might have resulted from approximating a ratio of infinite sums by a ratio of definite 

integrals in the course of the derivation. The following section addresses these three 

issues. 

Algorithm Simplification 

The expression for Fl(a,b,c) and F2(a,b,c), equations (20) and (21) in our first 

progress report have been simplified by considering the case of infinite upper limits of 

the integrals in (18) and (19) from which they were derived. The simplified expressions 

forFl andF2 become 

1 3/2 r 
Fl(a,b,c) = — a      Vc 

2 
exp 

.2 b   +ac 

2c 

l4ac(b + 

(a + c) 

c) 

2          2                      2 
(c    + a(b   + c + 26c + c   ))exp 

2" 
a(b + c) 

2c(a + c) 
•fhz Erf 

4a(b + c) 

T]2c(a + c) 
+ 1 

( 
N5/2 

a + c) 

(24) 
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and 

sac exp 

F2(a,b,c) = - 

(a-b) 

2(a + c) 
Erf 

Jä(b + c) 

^^(a + e) 
+ 1 

(25) 
Va + t 

with a = (Hf *)„, b = gm, c = o-,2. 

The simplified algorithm was tested against the exact algorithm with open-form sums in 

(15) and the results are shown below in Figure 10. 

Errorm 
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Figure 10. Average Error per pixel, as defined in (23) versus number 

of iterations. The offset pedestal has not been subtracted here. The 

same test object and noise conditions as in the Figure 6 was used. 

The summations in the open form expression were truncated to a region of plus or minus 

5as about gm to avoid excessively long reconstruction times. As can be seen from the 

figure the ratio-of-integrals approximation is virtually indistinguishable from the exact 

ratio-of-sums solution. 
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Image Offset 
As mentioned previously, another concern was that the ratio-of-integrals 

approximation introduced an image-wide offset. Figure 10 addresses this concern as well 

because it is apparent that both the exact and simplified algorithms converge to the same 

value, which is just slightly larger than the system noise floor often photon arrivals. In 

Figure 11, the second and eighth iterations of the two algorithms demonstrate that the 

primary source of error is indeed offset. 

100 200 300 

Figure 11. Plots of the error vector, f -f, versus element number for 

the second (top)and eighth (bottom) iterations of the simplified 

algorithm (left) and the exact algorithm (right). Pixel to pixel error 

from noise has been reduced to an offset pedestal. 

Accordingly we have concluded that the offset pedestal is inherent in the algorithm and is 

not a product of the simplifying approximations. Although we cannot prove formally at 

this point that the algorithm converges to the specified value of the system noise standard 

deviation, we will subtract it from the final image from here on. The justification is that 

the pedestal, which is a systematic error, can be subtracted because it is common to all 

pixels or resolution elements in the reconstruction. Tests have shown that the pedestal is 
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determined by the value of system noise input to the algorithm regardless of the actual 

system noise in the input data. 

Realistic Simulation 

To determine, whether the new algorithm is actually useful for 

chomotomography, an idealized CTIS system was simulated and the algorithm's 

performance was evaluated against one of our standard reconstruction methods, MART. 

The simulation mapped a 17x17x10 (x,y,X) object cube onto a 111x111 focal plane in 

four projections plus the center order. For simplicity, the ten spectral slices of the object 

cube produced exactly ten pixels of lateral dispersion in each projection. Spectrally 

uniform diffraction efficiency was assumed. Figures 12, 13, 14 show the object cube, the 

noiseless focal plane image and the focal plane image with temporal Poisson noise and 

Gaussian system noise with a standard deviation of 12 counts, respectively. 

Figure 12. Object cube consisting of ten spectral slices. Wavelength 

increases left to right, top to bottom. The exact spectral bands are 

irrelevant because the dispersion is defined in terms of displacement in 

pixels in the focal plane image. 
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Figure 13. Noiseless focal plane image. Each spectral image of Figure 

12 has been displaced radially by one pixel with respect to its short 

wavelength neighbor. 

Figure 14. Noisy focal plane image. Poisson noise was introduced to 

the image of Fig. 4 and added to Gaussian noise with a standard 

deviation of 12. 
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Figure   15.  MART  reconstruction  after  eight  iterations.   Signal- 

independent noise has propagated through the reconstruction process. 

Figure 16. New algorithm reconstruction after eight iterations. Signal- 

independent noise has been well suppressed in all but the two end 

bands. It is believed that constant diffraction efficiency versus 

wavelength in the CTIS simulation caused very low SNR in regions of 

the projections where spectral overlap is minimal... namely the end 

bands. 

Average error per pixel, was calculated for the two reconstructions, both of which used a 

uniform initial estimate. MART achieved a value of 5.4 arrivals/pixel whereas the new 

algorithm achieved a value of 3.3 arrivals/pixel. The reconstruction time for the new 

algorithm was, surprisingly, only 27 % longer than MART. It should be noted that a 

similar result could not have been achieved by a 3 x 3 median window filter applied to 

either the focal plane image or the final reconstruction since single pixel/resel objects 

would have been obliterated. 
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IV.      CONCLUSION 

Two reconstruction algorithms are described in this report. The first "Principal 

Component Method", has already proven useful in practice for providing better intial 

estimates of the object cube to enhance the speed and accuracy of traditional iterative 

reconstruction methods such as MART and EM. The second, "Extended Maximum 

Likelihood Method", should prove useful for anticipated low background observations in 

the MWIR. 
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